NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Does not meet standards4
Showing 16 to 30 of 1,122 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
James Drimalla – Educational Studies in Mathematics, 2025
Inferentialism has emerged as a valuable theoretical resource in mathematics education. As a theory of meaning about the use and content of concepts, it offers a fresh perspective on traditional epistemological and linguistic questions in the field. Despite its emergence, important inferentialist ideas still need to be operationalized. In this…
Descriptors: Mathematics Education, Mathematical Concepts, Inferences, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
David Broska; Michael Howes; Austin van Loon – Sociological Methods & Research, 2025
Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not "interchangeable," there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions…
Descriptors: Artificial Intelligence, Observation, Prediction, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Sourabh Balgi; Adel Daoud; Jose M. Peña; Geoffrey T. Wodtke; Jesse Zhou – Sociological Methods & Research, 2025
Social science theories often postulate systems of causal relationships among variables, which are commonly represented using directed acyclic graphs (DAGs). As non-parametric causal models, DAGs require no assumptions about the functional form of the hypothesized relationships. Nevertheless, to simplify empirical evaluation, researchers typically…
Descriptors: Graphs, Causal Models, Statistical Inference, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Amy Shelton; Collin Hitt – Journal of School Choice, 2024
There are over one million school-age children in Missouri, and we estimate 61,000 (6% of all school-age children) are homeschooled. Missouri is one of 29 states that does not require homeschooling to be reported. Using methods that can be replicated elsewhere with publicly available data, we test three approaches to estimating homeschool…
Descriptors: Home Schooling, Attendance, Data Collection, School Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Grantee Submission, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Schultz – Sociological Methods & Research, 2024
This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering…
Descriptors: Research Methodology, Sequential Approach, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Fangxing Bai; Ben Kelcey; Amota Ataneka; Yanli Xie; Kyle Cox; Nianbo Dong – Society for Research on Educational Effectiveness, 2024
Purpose: Multisite mediation studies are a cornerstone in mapping out developmental processes because they probe the mechanisms of a treatment while creating key opportunities to learn from and about variation in those mechanisms across sites. Despite the prevalence of multisite studies, a significant gap in the literature is how to plan such…
Descriptors: Randomized Controlled Trials, Mediation Theory, Statistical Analysis, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Yi, Zhiyao; Chen, Yi-Hsin; Yin, Yue; Cheng, Ke; Wang, Yan; Nguyen, Diep; Pham, Thanh; Kim, EunSook – Journal of Experimental Education, 2022
A simulation study was conducted to examine the efficacy of nine frequently-used HOV tests, including Levene's tests with squared residuals and with absolute residuals, Brown and Forsythe (BF) test, Bootstrap BF test, O'Brien test, Z-variance test, Box-Scheffé (BS) test, Bartlett test, and Pseudo jackknife test under comprehensive simulation…
Descriptors: Statistical Analysis, Robustness (Statistics), Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
Peer reviewed Peer reviewed
Direct linkDirect link
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
Peer reviewed Peer reviewed
Direct linkDirect link
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  75