Publication Date
| In 2026 | 0 |
| Since 2025 | 27 |
| Since 2022 (last 5 years) | 177 |
| Since 2017 (last 10 years) | 412 |
| Since 2007 (last 20 years) | 873 |
Descriptor
Source
Author
| Griffiths, Thomas L. | 10 |
| Bakker, Arthur | 8 |
| Ben-Zvi, Dani | 8 |
| Gelman, Andrew | 8 |
| Makar, Katie | 8 |
| Mislevy, Robert J. | 7 |
| Pfannkuch, Maxine | 7 |
| Qinyun Lin | 7 |
| Wagenmakers, Eric-Jan | 7 |
| Kenneth A. Frank | 6 |
| Tenenbaum, Joshua B. | 6 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 35 |
| Teachers | 31 |
| Practitioners | 15 |
| Administrators | 3 |
| Students | 3 |
| Media Staff | 1 |
| Parents | 1 |
| Policymakers | 1 |
Location
| Australia | 23 |
| Turkey | 13 |
| California | 9 |
| Canada | 8 |
| Malaysia | 8 |
| Netherlands | 8 |
| Texas | 8 |
| United States | 8 |
| United Kingdom (England) | 7 |
| Indonesia | 6 |
| New Zealand | 6 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 3 |
| Aid to Families with… | 1 |
| Head Start | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Does not meet standards | 4 |
Vehtari, Aki; Gelman, Andrew; Sivula, Tuomas; Jylänki, Pasi; Tran, Dustin; Sahai, Swupnil; Blomstedt, Paul; Cunningham, John P.; Schiminovich, David; Robert, Christian P. – Grantee Submission, 2020
A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for…
Descriptors: Bayesian Statistics, Algorithms, Computation, Generalization
Blake H. Heller; Carly D. Robinson – Annenberg Institute for School Reform at Brown University, 2024
Quasi-experimental methods are a cornerstone of applied social science, providing critical answers to causal questions that inform policy and practice. Although open science principles have influenced experimental research norms across the social sciences, these practices are rarely implemented in quasi-experimental research. In this paper, we…
Descriptors: Social Science Research, Research Methodology, Quasiexperimental Design, Scientific Principles
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Estrella, Soledad; Mendez-Reina, Maritza; Olfos, Raimundo; Aguilera, Jocelyn – International Journal for Lesson and Learning Studies, 2022
Purpose: This study aims to describe the pedagogical content knowledge (PCK) of a kindergarten educator who implements a lesson plan about informal inferential reasoning designed in a lesson study group. Design/methodology/approach: To this end, we analyzed teaching interventions in two kindergarten lessons focused on the playful task of tossing…
Descriptors: Statistics Education, Kindergarten, Preschool Teachers, Pedagogical Content Knowledge
Adam C. Sales; Ethan Prihar; Johann Gagnon-Bartsch; Ashish Gurung; Neil T. Heffernan – Grantee Submission, 2022
Randomized A/B tests allow causal estimation without confounding but are often under-powered. This paper uses a new dataset, including over 250 randomized comparisons conducted in an online learning platform, to illustrate a method combining data from A/B tests with log data from users who were not in the experiment. Inference remains exact and…
Descriptors: Research Methodology, Educational Experiments, Causal Models, Computation
Tianci Liu; Chun Wang; Gongjun Xu – Grantee Submission, 2022
Multidimensional Item Response Theory (MIRT) is widely used in educational and psychological assessment and evaluation. With the increasing size of modern assessment data, many existing estimation methods become computationally demanding and hence they are not scalable to big data, especially for the multidimensional three-parameter and…
Descriptors: Item Response Theory, Computation, Monte Carlo Methods, Algorithms
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference
Rrita Zejnullahi – Society for Research on Educational Effectiveness, 2021
Background: Meta-analysis is considered to be the gold standard for evidence synthesis. It involves combining data from multiple independent sources to produce a summary estimate with improved precision. Traditionally, meta-analysis methods have been applied to a large collection of studies, and past research efforts have indicated its numerous…
Descriptors: Meta Analysis, Randomized Controlled Trials, Sample Size, Best Practices
Cleary, Timothy J.; Slemp, Jackie; Reddy, Linda A.; Alperin, Alexander; Lui, Angela; Austin, Amanda; Cedar, Tori – School Psychology Review, 2023
The primary purpose of this study was to systematically review the literature regarding the characteristics, use, and implementation of an emerging assessment methodology, "SRL microanalysis." Forty-two studies across diverse samples, contexts, and research methodologies met inclusion criteria. The majority of studies used microanalysis…
Descriptors: School Psychology, School Psychologists, Evaluation Methods, Metacognition
Najera, Hector – Measurement: Interdisciplinary Research and Perspectives, 2023
Measurement error affects the quality of population orderings of an index and, hence, increases the misclassification of the poor and the non-poor groups and affects statistical inferences from binary regression models. Hence, the conclusions about the extent, profile, and distribution of poverty are likely to be misleading. However, the size and…
Descriptors: Poverty, Error of Measurement, Classification, Statistical Inference
Estrella, Soledad; Méndez-Reina, Maritza; Vidal-Szabó, Pedro – Statistics Education Research Journal, 2023
Recent research suggests the benefits of supporting a progressive understanding of concepts of inference prior to the teaching of procedures and formal calculations through the study of informal statistical inference (ISI). To contribute to the growing knowledge about the early learning and teaching of statistics, particularly regarding the…
Descriptors: Grade 3, Elementary School Students, Learning Trajectories, Statistics Education
Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Structural equation modeling (SEM) is a statistical method widely used in educational research to investigate relationships between variables. SEM models are typically constructed based on theoretical foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to verify the causal inferences underlying…
Descriptors: Structural Equation Models, Statistical Analysis, Educational Research, Causal Models
Peer reviewedRan Xu; Kenneth A. Frank; Qinyun Lin; Spiro J. Maroulis; Xuesen Cheng – Grantee Submission, 2025
One of the most important factors affecting the use of evidence for policy or practice is the uncertainty of study results. Furthermore, this uncertainty is compounded by our increasing awareness of heterogeneous treatment effects. Here we inform debate about the strength of study evidence by quantifying the conditions necessary to nullify an…
Descriptors: Literacy Education, Intervention, Statistical Inference, Vocabulary Development

Direct link
