Publication Date
| In 2026 | 0 |
| Since 2025 | 48 |
| Since 2022 (last 5 years) | 452 |
| Since 2017 (last 10 years) | 1338 |
| Since 2007 (last 20 years) | 3201 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Teachers | 484 |
| Practitioners | 333 |
| Researchers | 59 |
| Students | 43 |
| Parents | 7 |
| Administrators | 3 |
| Community | 2 |
| Policymakers | 2 |
Location
| Turkey | 61 |
| Australia | 54 |
| United Kingdom | 35 |
| Canada | 32 |
| Sweden | 31 |
| Germany | 30 |
| China | 29 |
| Taiwan | 26 |
| Italy | 23 |
| United Kingdom (England) | 23 |
| Greece | 22 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 9 |
| Elementary and Secondary… | 2 |
| Head Start | 2 |
| Individuals with Disabilities… | 2 |
| Education Amendments 1972 | 1 |
| Education Professions… | 1 |
| Title IX Education Amendments… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 1 |
| Meets WWC Standards with or without Reservations | 3 |
Peer reviewedBrueningsen, Chris; Bower, William – Physics Teacher, 1995
Presents a series of simple activities involving generalized two-dimensional motion topics to prepare students to study projectile motion. Uses a pair of motion detectors, each connected to a calculator-based-laboratory (CBL) unit interfaced with a standard graphics calculator, to explore two-dimensional motion. (JRH)
Descriptors: Computer Interfaces, Computers, Graphing Calculators, Instructional Materials
Peer reviewedStump, Daniel R. – Physics Teacher, 1995
Presents four examples of physics problems that can be solved with a graphing calculator. Problems included deal with motion, harmonic oscillations, sound waves, and blackbody radiation. (JRH)
Descriptors: Acoustics, Graphing Calculators, Graphs, Light
Peer reviewedRoy, Darlene – Science Teacher, 1995
Describes an activity that challenges students to apply their knowledge of motion to designing and constructing roller coasters. Emphasizes the processes students go through to communicate their ideas and the problem-solving skills they develop. (JRH)
Descriptors: Acceleration (Physics), Motion, Problem Solving, Science Activities
Peer reviewedBauman, Robert P. – Physics Teacher, 1992
Examines problems that commonly appear in the definition and discussion of work in physics textbooks. Presents the work-energy theorem, provides examples contradicting erroneous statements often found in textbook, and discusses the inconsistent terminology utilized with respect to force and work. (MDH)
Descriptors: Definitions, Energy, Force, High Schools
Peer reviewedDuzen, Carl; And Others – Physics Teacher, 1992
Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)
Descriptors: Acceleration (Physics), Classification, Force, High Schools
Peer reviewedQuantum, 1992
Discusses three topics related to physics: (1) the center of mass of a long stick thrown horizontally; (2) how electric current flows in metals; and (3) the theory of relativity in relationship with fictionalized time machines. (MDH)
Descriptors: Electricity, Force, High Schools, Higher Education
Perry, Tekla S. – TIES Magazine, 1991
The real-world meeting of electronics, computer monitoring, control systems, and mathematics, introduced in the context of sports, is described. Recent advances in the field of biomechanics and its use in improving athletic performance are discussed. (KR)
Descriptors: Athletics, Biomechanics, Human Body, Interdisciplinary Approach
Peer reviewedTompson, C. W.; Wragg, J. L. – Physics Teacher, 1991
A quantitative application of magnetic braking performed with an air track is described. The experimental measurement of the position of the glider as a function of time is calculated. (KR)
Descriptors: Electricity, Graphs, Higher Education, Introductory Courses
Peer reviewedWhitelock, Denise – International Journal of Science Education, 1991
The testing of a formal causal model of thinking about motion is described using a matching-pairs paper-and-pencil task. Subjects were asked to distinguish between examples of stereotypical motions by the similarity or difference of causes of pairs of motions. The results suggest that responses can be predicted by the model with the addition of an…
Descriptors: Causal Models, Cognitive Development, Concept Formation, Elementary Secondary Education
Peer reviewedPinto, Fabrizio – Physics Teacher, 1993
Provides diagrams and text to describe the procedures and results of an experiment used to introduce students to parametric resonance. (ZWH)
Descriptors: Calculus, High Schools, Mathematics Instruction, Motion
Peer reviewedBergquist, Wilbur – Physics Teacher, 1991
An example of how a traditional activity on motion and acceleration can be adapted to the learning-cycle format is described. The three challenge statements given to students to solve are provided. The key learning-cycle steps of exploration, expansion, and extension are discussed. (KR)
Descriptors: Acceleration (Physics), Cooperative Learning, Lecture Method, Motion
Peer reviewedOgborn, Jon; Bliss, Joan – European Journal of Psychology of Education, 1990
Offers a theory of how commonsense reasoning about motion may develop. Takes as fundamental the basic categories: action, object, space, cause, time, and movement. Suggests that very primitive elements could combine to provide schemes of motion recognizable in psychological accounts of infancy and generate prototypes of and rules for motion. (DK)
Descriptors: Cognitive Development, Cognitive Psychology, Early Childhood Education, Epistemology
Peer reviewedPloetzner, Rolf; And Others – European Journal of Psychology of Education, 1990
Discusses the artificial-intelligence-based microworld DiBi and MULEDS, a multilevel diagnosis system. Developed to adapt tutoring style to the individual learner. Explains that DiBi sets up a learning environment, and simulates elastic impacts as a subtopic of classical mechanics, and supporting reasoning on different levels of mental domain…
Descriptors: Artificial Intelligence, Computer Uses in Education, Educational Technology, Learning Strategies
Peer reviewedWinters, Loren M. – Physics Teacher, 1991
Describes the use of a microcomputer as an intervalometer for the control and timing of several flash units to photograph high-speed events. Applies this technology to study the oscillations of a stretched rubber band, the deceleration of high-speed projectiles in water, the splashes of milk drops, and the bursts of popcorn kernels. (MDH)
Descriptors: Computer Assisted Instruction, Computers, High Schools, Light
Peer reviewedHoffman, Dale T. – Physics Teacher, 1991
Discusses a misconception about the cycloid that asserts the final point on the path of shortest time in the "Brachistochrone" problem is at the lowest point on the cycloid. Uses a BASIC program for Newton's method to determine the correct least-time cycloid. (MDH)
Descriptors: High Schools, Mathematical Formulas, Mathematical Models, Misconceptions


