Publication Date
In 2025 | 81 |
Since 2024 | 396 |
Since 2021 (last 5 years) | 772 |
Since 2016 (last 10 years) | 798 |
Since 2006 (last 20 years) | 801 |
Descriptor
Source
Author
van der Linden, Wim J. | 17 |
Kiers, Henk A. L. | 13 |
ten Berge, Jos M. F. | 10 |
Gongjun Xu | 9 |
Gerlach, Vernon S. | 8 |
Willett, Peter | 8 |
Chun Wang | 7 |
Stocking, Martha L. | 7 |
Charp, Sylvia | 6 |
Chen, Hsinchun | 6 |
Craven, Timothy C. | 6 |
More ▼ |
Publication Type
Education Level
Audience
Practitioners | 255 |
Teachers | 126 |
Researchers | 114 |
Policymakers | 6 |
Administrators | 5 |
Students | 4 |
Counselors | 1 |
Media Staff | 1 |
Support Staff | 1 |
Location
Australia | 17 |
China | 17 |
Netherlands | 14 |
Turkey | 13 |
USSR | 10 |
United States | 10 |
California | 8 |
United Kingdom (England) | 7 |
Brazil | 6 |
Europe | 6 |
Germany | 6 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Zixuan Ke – ProQuest LLC, 2024
The essence of human intelligence lies in its ability to learn continuously, accumulating past knowledge to aid in future learning and problem-solving endeavors. In contrast, the current machine learning paradigm often operates in isolation, lacking the capacity for continual learning and adaptation. This deficiency becomes apparent in the face of…
Descriptors: Computational Linguistics, Computer Software, Barriers, Artificial Intelligence
Pasty Asamoah; John Serbe Marfo; Matilda Kokui Owusu-Bio; Ivy Maame Efua Hinson; Robert Doe; Daniel Zokpe – Africa Education Review, 2024
Academic integrity fosters a culture of honesty, trust, and respect within the educational community. Evidence indicates that manual plagiarism checks through human judgment remain prevalent in undergraduate theses, terminal assignments, and group projects in developing countries. To fill this gap, we engaged with students and staff of the Kwame…
Descriptors: Foreign Countries, Undergraduate Study, Plagiarism, Writing (Composition)
Franz Classe; Christoph Kern – Educational and Psychological Measurement, 2024
We develop a "latent variable forest" (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on "confirmatory factor analysis" (CFA) models with ordinal and/or numerical response variables. Through parametric model…
Descriptors: Algorithms, Item Response Theory, Artificial Intelligence, Factor Analysis
Sijia Huang; Seungwon Chung; Carl F. Falk – Journal of Educational Measurement, 2024
In this study, we introduced a cross-classified multidimensional nominal response model (CC-MNRM) to account for various response styles (RS) in the presence of cross-classified data. The proposed model allows slopes to vary across items and can explore impacts of observed covariates on latent constructs. We applied a recently developed variant of…
Descriptors: Response Style (Tests), Classification, Data, Models
Why Explainable AI May Not Be Enough: Predictions and Mispredictions in Decision Making in Education
Mohammed Saqr; Sonsoles López-Pernas – Smart Learning Environments, 2024
In learning analytics and in education at large, AI explanations are always computed from aggregate data of all the students to offer the "average" picture. Whereas the average may work for most students, it does not reflect or capture the individual differences or the variability among students. Therefore, instance-level…
Descriptors: Artificial Intelligence, Decision Making, Predictor Variables, Feedback (Response)
Suleyman Alpaslan Sulak; Nigmet Koklu – European Journal of Education, 2024
This study employs advanced data mining techniques to investigate the DASS-42 questionnaire, a widely used psychological assessment tool. Administered to 680 students at Necmettin Erbakan University's Ahmet Kelesoglu Faculty of Education, the DASS-42 comprises three distinct subscales--depression, anxiety and stress--each consisting of 14 items.…
Descriptors: Foreign Countries, Algorithms, Information Retrieval, Data Analysis
Michael Wade Ashby – ProQuest LLC, 2024
Whether machine learning algorithms effectively predict college students' course outcomes using learning management system data is unknown. Identifying students who will have a poor outcome can help institutions plan future budgets and allocate resources to create interventions for underachieving students. Therefore, knowing the effectiveness of…
Descriptors: Artificial Intelligence, Algorithms, Prediction, Learning Management Systems
Eva Portelance; Michael C. Frank; Dan Jurafsky – Cognitive Science, 2024
Interpreting a seemingly simple function word like "or," "behind," or "more" can require logical, numerical, and relational reasoning. How are such words learned by children? Prior acquisition theories have often relied on positing a foundation of innate knowledge. Yet recent neural-network-based visual question…
Descriptors: Vocabulary, Grammar, Visual Aids, Language Acquisition
Sijia Huang; Dubravka Svetina Valdivia – Educational and Psychological Measurement, 2024
Identifying items with differential item functioning (DIF) in an assessment is a crucial step for achieving equitable measurement. One critical issue that has not been fully addressed with existing studies is how DIF items can be detected when data are multilevel. In the present study, we introduced a Lord's Wald X[superscript 2] test-based…
Descriptors: Item Analysis, Item Response Theory, Algorithms, Accuracy
Eeshan Hasan; Erik Duhaime; Jennifer S. Trueblood – Cognitive Research: Principles and Implications, 2024
A crucial bottleneck in medical artificial intelligence (AI) is high-quality labeled medical datasets. In this paper, we test a large variety of wisdom of the crowd algorithms to label medical images that were initially classified by individuals recruited through an app-based platform. Individuals classified skin lesions from the International…
Descriptors: Algorithms, Human Body, Classification, Knowledge Level
Bin Tan; Hao-Yue Jin; Maria Cutumisu – Computer Science Education, 2024
Background and Context: Computational thinking (CT) has been increasingly added to K-12 curricula, prompting teachers to grade more and more CT artifacts. This has led to a rise in automated CT assessment tools. Objective: This study examines the scope and characteristics of publications that use machine learning (ML) approaches to assess…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Student Evaluation
Hassan Kilavo; Tabu S. Kondo; Feruzi Hassan – Interactive Learning Environments, 2024
Today computing is intricate in all aspects of our lives, beginning with communications and education to banking, information security, health, shopping, and social media. Development of the computing is proportional to the development of software which is becoming a serious part of all daily lives. This paper, therefore, assessed the impact of…
Descriptors: Foreign Countries, Computer Science Education, Elementary School Students, Outcomes of Education
Marco Lünich; Birte Keller; Frank Marcinkowski – Technology, Knowledge and Learning, 2024
Artificial intelligence in higher education is becoming more prevalent as it promises improvements and acceleration of administrative processes concerning student support, aiming for increasing student success and graduation rates. For instance, Academic Performance Prediction (APP) provides individual feedback and serves as the foundation for…
Descriptors: Predictor Variables, Artificial Intelligence, Computer Software, Higher Education
Gary K. W. Wong; Shan Jian; Ho-Yin Cheung – Education and Information Technologies, 2024
This study examined the developmental process of children's computational thinking using block-based programming tools, specifically algorithmic thinking and debugging skills. With this aim, a group of children (N = 191) from two primary schools were studied for two years beginning from the fourth grade, as they engaged in our block-based…
Descriptors: Thinking Skills, Skill Development, Computation, Algorithms
Adil Baqach; Amal Battou – Education and Information Technologies, 2024
Nowadays, e-learning is a significant learning option, especially in light of the COVID-19 pandemic. However, it is a very challenging task because, in online courses, tutors have no direct interaction with students, which causes most of them to lose interest and ultimately drop out of their studies. In regular classes, teachers can see how each…
Descriptors: MOOCs, Student Attitudes, Student Reaction, Tutors