NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 991 to 1,005 of 2,251 results Save | Export
Chung, Yeojin; Rabe-Hesketh, Sophia; Gelman, Andrew; Dorie, Vincent; Liu, Jinchen – Society for Research on Educational Effectiveness, 2012
Hierarchical or multilevel linear models are widely used for longitudinal or cross-sectional data on students nested in classes and schools, and are particularly important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-analyses. The models can allow for variation in treatment effects, as well as…
Descriptors: Statistical Analysis, Models, Computation, Maximum Likelihood Statistics
Shadish, William R.; Rindskopf, David M.; Hedges, Larry V.; Sullivan, Kristynn J. – Online Submission, 2012
Researchers in the single-case design tradition have debated the size and importance of the observed autocorrelations in those designs. All of the past estimates of the autocorrelation in that literature have taken the observed autocorrelation estimates as the data to be used in the debate. However, estimates of the autocorrelation are subject to…
Descriptors: Bayesian Statistics, Research Design, Correlation, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
de Leeuw, Christiaan; Klugkist, Irene – Multivariate Behavioral Research, 2012
In most research, linear regression analyses are performed without taking into account published results (i.e., reported summary statistics) of similar previous studies. Although the prior density in Bayesian linear regression could accommodate such prior knowledge, formal models for doing so are absent from the literature. The goal of this…
Descriptors: Data, Multiple Regression Analysis, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Vanpaemel, Wolf; Lee, Michael D. – Psychological Bulletin, 2012
Wills and Pothos (2012) reviewed approaches to evaluating formal models of categorization, raising a series of worthwhile issues, challenges, and goals. Unfortunately, in discussing these issues and proposing solutions, Wills and Pothos (2012) did not consider Bayesian methods in any detail. This means not only that their review excludes a major…
Descriptors: Classification, Program Evaluation, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z. – International Journal of Artificial Intelligence in Education, 2014
Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…
Descriptors: Intelligent Tutoring Systems, Visual Aids, Mathematics, Mixed Methods Research
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R. – Educational and Psychological Measurement, 2014
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Descriptors: Regression (Statistics), Models, Statistical Analysis, Maximum Likelihood Statistics
Nicole B. Kersting; Bruce L. Sherin; James W. Stigler – Educational and Psychological Measurement, 2014
In this study, we explored the potential for machine scoring of short written responses to the Classroom-Video-Analysis (CVA) assessment, which is designed to measure teachers' usable mathematics teaching knowledge. We created naïve Bayes classifiers for CVA scales assessing three different topic areas and compared computer-generated scores to…
Descriptors: Scoring, Automation, Video Technology, Teacher Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Mammadov, Sakhavat; Ward, Thomas J.; Cross, Jennifer Riedl; Cross, Tracy L. – Roeper Review, 2016
To date, in gifted education and related fields various conventional factor analytic and clustering techniques have been used extensively for investigation of the underlying structure of data. Latent profile analysis is a relatively new method in the field. In this article, we provide an introduction to latent profile analysis for gifted education…
Descriptors: Statistical Analysis, Academically Gifted, Factor Analysis, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Culpepper, Steven Andrew – Journal of Educational and Behavioral Statistics, 2015
A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…
Descriptors: Bayesian Statistics, Models, Sampling, Computation
MacLellan, Christopher J.; Liu, Ran; Koedinger, Kenneth R. – International Educational Data Mining Society, 2015
Additive Factors Model (AFM) and Performance Factors Analysis (PFA) are two popular models of student learning that employ logistic regression to estimate parameters and predict performance. This is in contrast to Bayesian Knowledge Tracing (BKT) which uses a Hidden Markov Model formalism. While all three models tend to make similar predictions,…
Descriptors: Factor Analysis, Regression (Statistics), Knowledge Level, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Solomon, Benjamin G.; Forsberg, Ole J. – School Psychology Quarterly, 2017
Bayesian techniques have become increasingly present in the social sciences, fueled by advances in computer speed and the development of user-friendly software. In this paper, we forward the use of Bayesian Asymmetric Regression (BAR) to monitor intervention responsiveness when using Curriculum-Based Measurement (CBM) to assess oral reading…
Descriptors: Bayesian Statistics, Regression (Statistics), Least Squares Statistics, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Belland, Brian R.; Walker, Andrew E.; Kim, Nam Ju – Review of Educational Research, 2017
Computer-based scaffolding provides temporary support that enables students to participate in and become more proficient at complex skills like problem solving, argumentation, and evaluation. While meta-analyses have addressed between-subject differences on cognitive outcomes resulting from scaffolding, none has addressed within-subject gains.…
Descriptors: Bayesian Statistics, Meta Analysis, STEM Education, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bassok, Daphna; Latham, Scott – Educational Researcher, 2017
Private and public investments in early childhood education have expanded significantly in recent years. Despite this heightened investment, we have little empirical evidence on whether children today enter school with different skills than they did in the late nineties. Using two large, nationally representative data sets, this article documents…
Descriptors: Kindergarten, Early Childhood Education, Literacy, Mathematics Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Waismeyer, Anna S.; Jacobs, Lucia F. – Developmental Psychology, 2013
The development of spatial navigation in children depends not only on remembering which landmarks lead to a goal location but also on developing strategies to deal with changes in the environment or imperfections in memory. Using cue combination methods, the authors examined 3- and 4-year-old children's memory for different types of spatial cues…
Descriptors: Cues, Young Children, Memory, Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Orhan, A. Emin; Jacobs, Robert A. – Psychological Review, 2013
Experimental evidence suggests that the content of a memory for even a simple display encoded in visual short-term memory (VSTM) can be very complex. VSTM uses organizational processes that make the representation of an item dependent on the feature values of all displayed items as well as on these items' representations. Here, we develop a…
Descriptors: Short Term Memory, Visual Perception, Cognitive Processes, Bias
Pages: 1  |  ...  |  63  |  64  |  65  |  66  |  67  |  68  |  69  |  70  |  71  |  ...  |  151