Publication Date
In 2025 | 16 |
Since 2024 | 73 |
Since 2021 (last 5 years) | 204 |
Since 2016 (last 10 years) | 470 |
Since 2006 (last 20 years) | 879 |
Descriptor
Source
Author
Griffiths, Thomas L. | 10 |
Bakker, Arthur | 8 |
Ben-Zvi, Dani | 8 |
Gelman, Andrew | 8 |
Makar, Katie | 8 |
Mislevy, Robert J. | 7 |
Pfannkuch, Maxine | 7 |
Wagenmakers, Eric-Jan | 7 |
Tenenbaum, Joshua B. | 6 |
Thompson, Bruce | 6 |
Yuan, Ke-Hai | 6 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 35 |
Teachers | 31 |
Practitioners | 15 |
Administrators | 3 |
Students | 3 |
Media Staff | 1 |
Parents | 1 |
Policymakers | 1 |
Location
Australia | 23 |
Turkey | 13 |
California | 9 |
Canada | 8 |
Malaysia | 8 |
Netherlands | 8 |
Texas | 8 |
United States | 8 |
United Kingdom (England) | 7 |
Indonesia | 6 |
New Zealand | 6 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 3 |
Aid to Families with… | 1 |
Head Start | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Does not meet standards | 4 |
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Michael Schultz – Sociological Methods & Research, 2024
This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering…
Descriptors: Research Methodology, Sequential Approach, Models, Markov Processes
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Fangxing Bai; Ben Kelcey; Amota Ataneka; Yanli Xie; Kyle Cox; Nianbo Dong – Society for Research on Educational Effectiveness, 2024
Purpose: Multisite mediation studies are a cornerstone in mapping out developmental processes because they probe the mechanisms of a treatment while creating key opportunities to learn from and about variation in those mechanisms across sites. Despite the prevalence of multisite studies, a significant gap in the literature is how to plan such…
Descriptors: Randomized Controlled Trials, Mediation Theory, Statistical Analysis, Robustness (Statistics)
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
Julian Schuessler; Peter Selb – Sociological Methods & Research, 2025
Directed acyclic graphs (DAGs) are now a popular tool to inform causal inferences. We discuss how DAGs can also be used to encode theoretical assumptions about nonprobability samples and survey nonresponse and to determine whether population quantities including conditional distributions and regressions can be identified. We describe sources of…
Descriptors: Data Collection, Graphs, Error of Measurement, Statistical Bias
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Roderick J. Little; James R. Carpenter; Katherine J. Lee – Sociological Methods & Research, 2024
Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an analysis are included; (b) weighting, where the complete cases are weighted by the inverse of an estimate of the probability of being complete; and (c)…
Descriptors: Foreign Countries, Probability, Robustness (Statistics), Responses
Bonett, Douglas G. – Journal of Educational and Behavioral Statistics, 2022
The limitations of Cohen's ? are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical…
Descriptors: Statistical Inference, Statistical Data, Interrater Reliability, Design
Finch, Sue; Gordon, Ian – Teaching Statistics: An International Journal for Teachers, 2023
Providing a rich context has become a sine qua non of principled teaching of applied statistical thinking. With increasing opportunities to access secondary data, there should be increasing opportunity to work with rich context. We review the contextual information provided in 41 data sets suitable for introductory tertiary statistics teaching,…
Descriptors: Statistics Education, Literacy, Introductory Courses, Statistical Analysis
Wendy Chan; Jimin Oh; Chen Li; Jiexuan Huang; Yeran Tong – Society for Research on Educational Effectiveness, 2023
Background: The generalizability of a study's results continues to be at the forefront of concerns in evaluation research in education (Tipton & Olsen, 2018). Over the past decade, statisticians have developed methods, mainly based on propensity scores, to improve generalizations in the absence of random sampling (Stuart et al., 2011; Tipton,…
Descriptors: Generalizability Theory, Probability, Scores, Sampling
Yunxiao Chen; Chengcheng Li; Jing Ouyang; Gongjun Xu – Grantee Submission, 2023
We consider the statistical inference for noisy incomplete binary (or 1-bit) matrix. Despite the importance of uncertainty quantification to matrix completion, most of the categorical matrix completion literature focuses on point estimation and prediction. This paper moves one step further toward the statistical inference for binary matrix…
Descriptors: Statistical Inference, Matrices, Voting, Federal Government