NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 331 to 345 of 2,733 results Save | Export
Sonu Jose – ProQuest LLC, 2020
Bayesian network is a probabilistic graphical model that has wide applications in various domains due to its peculiarity of knowledge representation and reasoning under uncertainty. This research aims at Bayesian network structure learning and how the learned model can be used for reasoning. Learning the structure of Bayesian network from data is…
Descriptors: Bayesian Statistics, Models, Simulation, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Jialun Pan; Zhanzhan Zhao; Dongkun Han – IEEE Transactions on Learning Technologies, 2025
Properly predicting students' academic performance is crucial for elevating educational outcomes in various disciplines. Through precise performance prediction, schools can quickly pinpoint students facing challenges and provide customized educational materials suited to their specific learning needs. The reliance on teachers' experience to…
Descriptors: Prediction, Academic Achievement, At Risk Students, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Monika Mladenovic; Lucija Medak; Divna Krpan – ACM Transactions on Computing Education, 2025
Computer Science (CS) Unplugged activities are designed to engage students with CS concepts. It is an active learning approach combining physical interaction with visual representation. This research article investigates the impact of CS Unplugged on students' understanding of the bubble sort algorithm. Algorithm visualization, traditionally…
Descriptors: Computer Science Education, Learning Activities, Active Learning, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Cui; Xiao-Xi Xiao; Zhi-Li Zhan; Guo-Liang Yang – Research Evaluation, 2025
In the current higher education landscape, universities are facing expanding requirements beyond teaching and research. Evaluation methods must evolve accordingly to prevent universities from facing development dilemmas. Current mainstream evaluation methods primarily emphasize the research domain, often failing to holistically capture a…
Descriptors: Universities, Diversity, Equal Education, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Peer reviewed Peer reviewed
Direct linkDirect link
Asiye Toker Gokce; Arzu Deveci Topal; Aynur Kolburan Geçer; Canan Dilek Eren – Education and Information Technologies, 2025
Artificial intelligence (AI) literacy is critical to shaping students' academic experiences and future opportunities inhigher education. This study examines AI literacy among university students, examining variables such as gender, frequency of use of AI applications, completion of AI-related courses, and field of study. The research involved 664…
Descriptors: Artificial Intelligence, Technological Literacy, College Students, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Anne B. Reinertsen – Policy Futures in Education, 2025
Digitalization needs to be storied for me to become critical of and creative with its functionings. In today's algorithmic condition, knowledge production and learning are complex posthuman entanglements: the human as materially affective has become fabricated hybrids of organism and machine. Storying is seen as simultaneous processes of…
Descriptors: Algorithms, Story Telling, Technology Uses in Education, Humanization
Peer reviewed Peer reviewed
Direct linkDirect link
Kuadey, Noble Arden; Mahama, Francois; Ankora, Carlos; Bensah, Lily; Maale, Gerald Tietaa; Agbesi, Victor Kwaku; Kuadey, Anthony Mawuena; Adjei, Laurene – Interactive Technology and Smart Education, 2023
Purpose: This study aims to investigate factors that could predict the continued usage of e-learning systems, such as the learning management systems (LMS) at a Technical University in Ghana using machine learning algorithms. Design/methodology/approach: The proposed model for this study adopted a unified theory of acceptance and use of technology…
Descriptors: Foreign Countries, College Students, Learning Management Systems, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Xia, Xiaona – Interactive Learning Environments, 2023
Interactive learning environments can generate massive learning behavior data and the support of learning behavior big data can ensure the completeness of data analysis and robustness of relationship verification. In this study, learning behaviors are divided into training set and testing set, BP neural network and recurrent Elman network are…
Descriptors: Interaction, Intervention, Student Behavior, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Swist, Teresa; Humphry, Justine; Gulson, Kalervo N. – Learning, Media and Technology, 2023
There is a broad impetus across policy and institutional domains to expand public engagement and involvement with emerging technology research and innovation. Yet innovative theory, methods, and practices to critically explore algorithmic system controversies and democratic possibilities are still in nascent form. In this paper, we bring together…
Descriptors: Algorithms, Data Analysis, Democracy, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Chunhong; Zhang, Haoyang; Zhang, Jieyu; Zhang, Zhengling; Yuan, Peiyan – International Journal of Information and Communication Technology Education, 2023
Current learning platforms generally have problems such as fragmented knowledge, redundant information, and chaotic learning routes, which cannot meet learners' autonomous learning requirements. This paper designs a learning path recommendation system based on knowledge graphs by using the characteristics of knowledge graphs to structurally…
Descriptors: Educational Technology, Artificial Intelligence, Electronic Learning, Concept Mapping
Peer reviewed Peer reviewed
Direct linkDirect link
Obeng, Asare Yaw – Cogent Education, 2023
The learning processes have been significantly impacted by technology. Numerous learners have adopted technology-based learning systems as the preferred form of learning. It is then necessary to identify the learning styles of learners to deliver appropriate resources, engage them, increase their motivation, and enhance their satisfaction and…
Descriptors: Predictor Variables, Cognitive Style, Electronic Learning, College Freshmen
Peer reviewed Peer reviewed
Direct linkDirect link
Zanellati, Andrea; Macauda, Anita; Panciroli, Chiara; Gabbrielli, Maurizio – Research on Education and Media, 2023
Within scientific debate on post-digital and education, we present a position paper to describe a research project aimed at the design of a predictive model for students' low achievements in mathematics in Italy. The model is based on the INVALSI data set, an Italian large-scale assessment test, and we use decision trees as the classification…
Descriptors: Foreign Countries, Artificial Intelligence, Models, Algorithms
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rodriguez, AE; Rosen, John – Research in Higher Education Journal, 2023
The various empirical models built for enrollment management, operations, and program evaluation purposes may have lost their predictive power as a result of the recent collective impact of COVID restrictions, widespread social upheaval, and the shift in educational preferences. This statistical artifact is known as model drifting, data-shift,…
Descriptors: Models, Enrollment Management, School Holding Power, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Hui-Tzu; Lin, Chia-Yu; Jheng, Wei-Bin; Chen, Shih-Hsu; Wu, Hsien-Hua; Tseng, Fang-Ching; Wang, Li-Chun – Educational Technology & Society, 2023
The objective of this research is based on human-centered AI in education to develop a personalized hybrid course recommendation system (PHCRS) to assist students with course selection decisions from different departments. The system integrates three recommendation methods, item-based, user-based and content-based filtering, and then optimizes the…
Descriptors: Artificial Intelligence, Course Selection (Students), Blended Learning, Accuracy
Pages: 1  |  ...  |  19  |  20  |  21  |  22  |  23  |  24  |  25  |  26  |  27  |  ...  |  183