NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: ED675647
Record Type: Non-Journal
Publication Date: 2025
Pages: 7
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: N/A
Available Date: 0000-00-00
Objective Metrics for Evaluating Large Language Models Using External Data Sources
Haoze Du; Richard Li; Edward Gehringer
International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (18th, Palermo, Italy, Jul 20-23, 2025)
Evaluating the performance of Large Language Models (LLMs) is a critical yet challenging task, particularly when aiming to avoid subjective assessments. This paper proposes a framework for leveraging subjective metrics derived from the class textual materials across different semesters to assess LLM outputs across various tasks. By utilizing well-defined benchmarks, factual datasets, and structured evaluation pipelines, the approach ensures consistent, reproducible, and bias-minimized measurements. The framework emphasizes automation and transparency in scoring, reducing reliance on human interpretation while ensuring alignment with real-world applications. This method addresses the limitations of subjective evaluation methods, providing a scalable solution for performance assessment in educational, scientific, and other high-stakes domains. [For the complete proceedings, see ED675583.]
International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: https://educationaldatamining.org/conferences/
Publication Type: Speeches/Meeting Papers; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A