NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 16 to 30 of 111,963 results Save | Export
Edgar C. Merkle; Oludare Ariyo; Sonja D. Winter; Mauricio Garnier-Villarreal – Grantee Submission, 2023
We review common situations in Bayesian latent variable models where the prior distribution that a researcher specifies differs from the prior distribution used during estimation. These situations can arise from the positive definite requirement on correlation matrices, from sign indeterminacy of factor loadings, and from order constraints on…
Descriptors: Models, Bayesian Statistics, Correlation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jean Marie Linhart – International Journal of Mathematical Education in Science and Technology, 2024
The historic total global human population dataset is available on Wikipedia and provides an opportunity for modelling with simple models such as the exponential and logistic differential equations for population. Using the per-capita population growth rate (PPGR) predicted by these two models and estimated PPGR from the data, we are able to…
Descriptors: Calculus, Population Growth, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Nargiza Mikhridinova; Carsten Wolff; Wim Van Petegem – Education and Information Technologies, 2024
An individual competence is one of the main human resources, which enables a person to operate in everyday life. A competence profile, formally captured and described as a structured model, may enable various operations, e.g., a more precise evaluation and closure of a training gap. Such application scenarios supported by information systems are…
Descriptors: Taxonomy, Competence, Models, Profiles
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel B. Wright – Open Education Studies, 2024
Pearson's correlation is widely used to test for an association between two variables and also forms the basis of several multivariate statistical procedures including many latent variable models. Spearman's [rho] is a popular alternative. These procedures are compared with ranking the data and then applying the inverse normal transformation, or…
Descriptors: Models, Simulation, Statistical Analysis, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Benjamin M. Rottman; Yiwen Zhang – Cognitive Research: Principles and Implications, 2025
Being able to notice that a cause-effect relation is getting stronger or weaker is important for adapting to one's environment and deciding how to use the cause in the future. We conducted an experiment in which participants learned about a cause-effect relation that either got stronger or weaker over time. The experiment was conducted with a…
Descriptors: Causal Models, Memory, Learning Processes, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Sanithia Tucker; Kaley Vincent – New Directions for Student Leadership, 2025
This article links the connection between music and leadership, exploring ways to connect musical icons to teaching leadership theory and concepts. The authors utilize the relationship leadership model (RLM) and the leadership identity development (LID) model through case studies of Beyoncé Knowles-Carter and Taylor Swift. We provide questions to…
Descriptors: Leadership Training, Role Models, Popular Culture, Music
Peer reviewed Peer reviewed
PDF on ERIC Download full text
David Williamson Shaffer; Yeyu Wang; Andrew Ruis – Journal of Learning Analytics, 2025
Learning is a multimodal process, and learning analytics (LA) researchers can readily access rich learning process data from multiple modalities, including audio-video recordings or transcripts of in-person interactions; logfiles and messages from online activities; and biometric measurements such as eye-tracking, movement, and galvanic skin…
Descriptors: Learning Processes, Learning Analytics, Models, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Adam N. Glynn; Miguel R. Rueda; Julian Schuessler – Sociological Methods & Research, 2024
Post-instrument covariates are often included as controls in instrumental variable (IV) analyses to address a violation of the exclusion restriction. However, we show that such analyses are subject to biases unless strong assumptions hold. Using linear constant-effects models, we present asymptotic bias formulas for three estimators (with and…
Descriptors: Causal Models, Statistical Inference, Error of Measurement, Least Squares Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua Weidlich; Ben Hicks; Hendrik Drachsler – Educational Technology Research and Development, 2024
Researchers tasked with understanding the effects of educational technology innovations face the challenge of providing evidence of causality. Given the complexities of studying learning in authentic contexts interwoven with technological affordances, conducting tightly-controlled randomized experiments is not always feasible nor desirable. Today,…
Descriptors: Educational Research, Educational Technology, Research Design, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Anna McAllister; Mark McCartney; David H. Glass – International Journal of Mathematical Education in Science and Technology, 2024
Discrete time models, one linear and one non-linear, are investigated, both with a herbivore species that consumes a basal food source species. Results are presented for coexistence of the species and to illustrate chaotic behaviour as parameters are varied in the non-linear model. The results indicate the benefit of fertilization in terms of the…
Descriptors: Lesson Plans, Mathematics Activities, Mathematics Instruction, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Kong – International Journal of Mathematical Education in Science and Technology, 2024
The COVID-19 pandemic, like past historical events such as the Vietnam War or 9/11, will shape a generation. Mathematics educators can seize this unprecedented opportunity to teach the principles of mathematical modeling in epidemiology. Compartmental epidemiological models, such as the SIR (susceptible-infected-recovered), are widely used by…
Descriptors: Mathematics Instruction, Teaching Methods, Advanced Courses, Epidemiology
Peer reviewed Peer reviewed
Direct linkDirect link
Ting Ye; Ted Westling; Lindsay Page; Luke Keele – Grantee Submission, 2024
The clustered observational study (COS) design is the observational study counterpart to the clustered randomized trial. In a COS, a treatment is assigned to intact groups, and all units within the group are exposed to the treatment. However, the treatment is non-randomly assigned. COSs are common in both education and health services research. In…
Descriptors: Nonparametric Statistics, Identification, Causal Models, Multivariate Analysis
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  7465